广义零射击学习(GZSL)旨在培训一个模型,以在某些输出类别在监督学习过程中未知的情况下对数据样本进行分类。为了解决这一具有挑战性的任务,GZSL利用可见的(源)和看不见的(目标)类的语义信息来弥合所见类和看不见的类之间的差距。自引入以来,已经制定了许多GZSL模型。在这篇评论论文中,我们介绍了有关GZSL的全面评论。首先,我们提供了GZSL的概述,包括问题和挑战。然后,我们为GZSL方法介绍了分层分类,并讨论了每个类别中的代表性方法。此外,我们讨论了GZSL的可用基准数据集和应用程序,以及有关研究差距和未来研究方向的讨论。
translated by 谷歌翻译
Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. Bayesian approximation and ensemble learning techniques are two of the most widely-used UQ methods in the literature. In this regard, researchers have proposed different UQ methods and examined their performance in a variety of applications such as computer vision (e.g., self-driving cars and object detection), image processing (e.g., image restoration), medical image analysis (e.g., medical image classification and segmentation), natural language processing (e.g., text classification, social media texts and recidivism risk-scoring), bioinformatics, etc. This study reviews recent advances in UQ methods used in deep learning, investigates the application of these methods in reinforcement learning, and highlight the fundamental research challenges and directions associated with the UQ field.
translated by 谷歌翻译
深度神经网络(DNN)已经在许多领域实现了最先进的性能。然而,DNN需要高计算时间,并且人们始终期望在较低的计算中进行更好的性能。因此,我们研究人类躯体传感系统并设计神经网络(SPINANNET),以实现更高的计算准确性,计算较少。传统NNS中的隐藏层接收前一层中的输入,应用激活函数,然后将结果传送到下一个图层。在拟议的脊柱植物中,每层分为三个分裂:1)输入分割,2)中间分割,3)输出分割。每个层的输入拆分接收到输入的一部分。每个层的中间分割接收先前层的中间分离的输出和电流层的输入分割的输出。输入权重的数量明显低于传统的DNN。 SPINANNET还可以用作DNN的完全连接或分类层,并支持传统的学习和转移学习。我们在大多数DNN中观察到具有较低计算成本的显着误差。 VGG-5网络上的传统学习具有SPINALNET分类层,为QMNIST,Kuzushiji-Mnist,EMNIST(字母,数字和平衡)数据集提供了最先进的(SOTA)性能。传统学习与Imagenet预训练的初始重量和Spinalnet分类层提供了STL-10,水果360,Bird225和CALTECH-101数据集的SOTA性能。拟议的SPINANNET的脚本可按以下链接提供:https://github.com/dipuk0506/spinalnet
translated by 谷歌翻译